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  Abstract  

 
 The steady boundary layer MHD stagnation- point flow past a stretching sheet 

through porous media with heat source /sink is investigated. The surface 

temperature of the sheet is taken time dependent. The governing equations are 

transformed into self-similar ordinary differential equations by adopting 

similarity transformations and then the converted equations are solved 

numerically by Runge-Kutta fourth order method. Special emphasis has been 

given to the parameters of physical interest which include velocity ratio 

parameter, Prandtl number, magnetic parameter, porous matrix,temperature 

index parameter and heat source parameter. The results obtained for velocity, 

temperature and skin friction are shown in tables and graphs. The comparison 

of the present results with the existing numerical solutions in a liming sense is 

also shown and this comparison is very good. 
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1. Introduction 

The flow over a stretching surface has wide range of applications in engineering and several technological 

purposes. This type of flow is frequently appears in many industrial and engineering processes and in those 

cases, the qualities of the final products depend to a great extent on the rate of cooling. So, to get better product 

the heat transfer should be controlled. Such a system is used in a wide variety of manufacturing processes such  

as crystal  growing,  plastic extrusion,  continuous casting etc. Crane [1] computed an exact similarity solution 

for the boundary layer flow of a Newtonian fluid towards an elastic sheet which is stretched with the velocity 

proportional to the distance from the origin. The heat and mass transfer on a stretching sheet with suction or 

blowing was studied by Gupta and Gupta [2]. Dutta et al. [3] analyzed the temperature distribution in the flow 

over a stretching sheetwith uniform heat flux. McLeod and Rajagopal [4] has then been used by Troy et al. [5] 

to investigate uniqueness of flow ofan incompressible second-order fluid past a stretching sheet. To do it, Troy 

et al. [5] have reduced the governing equation to a first-order Ricatti equation followed by an appropriate 

analysis. After this pioneering work, the flow field over a stretching surface has drawn considerable attention 

and a good amount of literature has been generated on this problem [6 - 8]. Chiam [9] investigated the 

stagnation-point flow towards a stretching sheet and found no boundary layer structure near the sheet. 

Mahapatra and Gupta [10] reinvestigated the same stagnation-point flow towards a stretching sheet and found 

two kinds of boundary layer near the sheet depending on the ratio of the stretching and straining rates. The 

stagnation-point flow over stretching sheet was further investigated by Mahapatra and Gupta [11], Nazar et al. 
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[12], Hayat et al. [13], where they explore some important properties.  Andersson [14] in-vestigated the MHD 

flow of a viscoelastic fluid past a stretching surface in the presence of a uniform transverse magnetic field. 

 

                  MHD flows play an important role in the motion of fluids. Normally, a uniform magnetic field 

is applied normal to the plate which is maintained at a constant temperature. The steady MHD mixed 

convection flow of a viscoelastic fluid in the neighborhood of two-dimensional stagnationpoints with a 

magnetic field has been investigated by Kumari and Nath[15]. The stagnation region encounters the highest 

pressure, the highest heat transfer, and the highest rates of mass deposition. Attai [16] has made an analysis of 

the steady laminar flow in a porous medium of an incompressible viscous fluid impinging on a permeable 

stretching surface with heat generation. The steady magneto hydrodynamic (MHD) mixed convection 

stagnation point flow towards a vertical surface immersed in an incompressible micropolarfluid with prescribed 

wall heat flux was investigated by Bachok[17] They have transformed the governing partial differential 

equations into a system of ordinary differential equations, which is then solved numerically by a finite-

difference method. Hayd[18] have studied the boundary layer equations for axisymmetric point flow of power-

law electrically conducting fluid through a porous medium with transverse magnetic field. . Stagnation point 

flow of a micropolar fluid towards a stretching sheethas been discusse. Xu et al. [19] examined the unsteady 

boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface. Some other 

studies on stagnation flows are discussed in [20–21]. Eladahak and Ghonain [22] studied the radiation effect 

on heat transfer of a micropolar fluid through a porous medium. The steady boundary layer flow of a micropolar 

fluid through a porous medium by using generalized Darcy’s law has been examined by Raptis [23]. 

                           The aim of the present paper is to discuss the analytic solution for unsteady MHD 

stagnation-point flow past a stretching sheet through porous media with heat source/sink. The method 

employed for the analytic solution of nonlinear problem is Runge-Kutta fourth order method. 

 

Nomenclature      

 

 

fC
 Wall skin friction coefficient   

f
 Dimensionless stream function   

0B
 Strength of magnetic field   pk

 Porosity parameter     

M  Magnetic parameter   xNu
 Local Nusselt number  

wq
 Surface heat flux    S  Heat source\sink  

Rex  Local Reynolds number                                    T  Temperature 

wT
 Constant temperature at the sheet                     

T  Ambient fluid temperature 

U  Free stream velocity wU
 Stretching velocity of the sheet 

,u v
 Velocity components    rp

 Prandtl number                                                                                                                          

 

Greek symbols 

 


            Similarity variable                                               Velocity ratio parameter  

  Dimensionless temperature   


 Stream function  

  Electrical conductivity of the fluid  w  Shear stress   

  Kinematic fluid viscosity   


 Fluid density 


 Dynamic viscosity    k  Thermal conductivity 

 

         

           

  

 

 

 

 

2. Mathematical Analysis 
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Consider a steady two-dimensional flow of an incompressible and electrically conducting fluid towards the 

stagnation point on a porous stretching surface in the presence of magnetic field of strength 0B applied in the 

positive y direction as shown in Fig. 1.The stretching velocity  wU x and the free stream velocity  U x

are assumed to vary proportional to distance x from the stagnation point, that  is  wU x ax and 

 U x bx  where ,a b are constants with 0, 0.a b  The surface of the sheet is subjected to a prescribed 

temperature   ,n

wT x T cx  whereT is the ambient fluid temperature and andc n are constants with 

0.c  The induced magnetic field is negligible due to small Reynolds number. Under the usual boundary layer 

approximations, the equations governing the problem of steady, incompressible and viscous flow are 

  

 

0
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x y
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The appropriate boundary conditions are  

 

( ), 0 , ( ) 0,

( ) , ,

w wu U x v T T x at y

u U x T T as y 

    


        (4) 

 
3. Solution of the flow field 

 

 

 

 

 

Fig.1 Physical model and co-ordinate system 

uw 
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Equation (1) is satisfied if we chose a dimensionless stream function ( , )x y  so that  

, .u v
y x

  
  
 

        (5) 

We now introduce the following dimensionless quantities; the mathematical analysis of the problem is 

simplified by introducing the following similarity transforms: 

, ( , ) ( ), ( )
w

T Ta
y x y x a f

T T
     







  


     (6) 

Using the similarity transformation quantities, the governing Eqs. (1)–(3) are transformed to the ordinary 

differential equation as follows: 

2 2 1
( )( ) 0,

1
0

p

r

f ff f M f
k

f nf S
p

 

   


          



     
       (7) 

With boundary conditions 

( ) 0, ( ) 1, ( ) 1 0,

( ) , ( ) 0 ,

f f at

f as

    

    

    


        (8)

 Where b a   is the velocity ratio parameter, rp    is the prandtl number, 
2

0 ( )M B a   is the 

magnetic parameter, 
pk is the porous matrix, and S is the heat source/sink. The primes denote differentiation 

with respect to . 

The physical quantities are: 

Skin friction coefficient 
2 / 2

w
f

w

C
U




  

Local Nusselt number 
( )

w
x

w

xq
Nu

k T T




 

The wall shear stress 0( )w y

u

y
  





 

The surface heat flux 0( )w y

T
q k

y



 


 

The local Reynolds number Re w
x

U x




 
Special case 

When 0  , the closed form solution is  

 
1

11
(1 )

1
1

p

M
k

p

f e

M
k




 

 

 

       (9) 

Using (9) the temperature equation of (7) subject to boundary condition (8) is given by 

 

1
1

1
1 ( , 1, )

,
( , 1, )

r

p

p

p
M

kM
k F n e

e
F n
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 

  

   
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
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Where 
1

1

r

p

p

M
k

 

 

 and ( , , )F a b z denote the confluent hypergeometric function. 
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The skin friction coefficient (0)f  and the Nusselt number (0)  can be shown to given by  

(0) 1
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(0) 1 .

1 ( , 1, )1

r

f M

p n F n

F nM

   


   

   

     

     
     

     (11) 

4. Numerical Results and Discussion 

 

Table1. Skin friction coefficient, Nusselt number for the various thermo-physical parameters. 

  
 0f   (0)   

  
 0f   (0)   

M  pK  0.1,P 1, 1, 0r n S      M  pK  0.1,P 1, 1, 0.5r n S      

0 100 -0.97377 1.021028 0 100 -0.97377 0.6255 

0 0.5 -1.59812 0.904811 0 0.5 -1.59812 0.264829 

1 100 -1.32417 0.952124 1 100 -1.32417 0.429455 

1 0.5 -1.83394 0.868752 1 0.5 -1.83394 0.121819 

n  pK  0.1,P 1,M 1, 0.5r S        pK  1,P 1,M 1, 0.5rn S     

-0.5 100 -1.32417 -2.6968 0.1 100 -1.32417 0.429455 

-0.5 0.5 -1.83394 -16.5073 0.1 0.5 -1.83394 0.121819 

1 100 -1.32417 0.429455 2 100 2.251303 1.341884 

1 0.5 -1.83394 0.121819 2 0.5 2.653976 1.361664 

rP  pK  1, 1,M 1, 0.5n S     

 

0.7 100 -1.32417 0.323544 

0.7 0.5 -1.83394 0.141104 

1 100 -1.32417 0.429455 

1 0.5 -1.32417 0.121819 
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Fig.2 Velocity profiles for different values of M and K
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Fig.3 Velocity profiles for different values of M,K
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Fig.5 Temperature profile for different values of S and  with P
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Fig.6 Temperature profile for different values of P
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Fig.7 Temperature profiles for different values of  and K
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Curve No. M  
pK  n  

rp  S  

I 0 100 0 0.7 0 

II 1 100 0 0.7 0 

III 1 100 -0.5 0.7 0 

IV 1 100 -0.5 0.7 -0.5 

V 1 0.5 -0.5 0.7 -0.5 

VI 1 0.5 0.5 0.7 -0.5 

VII 1 0.5 0.5 7 -0.5 

VIII 1 0.5 0.5 0.7 0.5 

IX 1 100 0.5 0.7 0.5 

X 2 100 0.5 0.7 0.5 

 

 

 

 

 

The formulation of the problem that account for, MHD stagnation-point flow past a stretching sheet through 

porous media with heat source/sinkwas accomplished The Equations (7)-(8) are solved numerically using the 

fourth order Runge-Kutta method implemented on a computer program written in Matlab. A convenient step 

size was chosen to obtain the desired accuracy. The values for the velocity and temperature profiles and the 

skin-friction coefficients, Nusselt numbers have been obtained and tabulated for various parametric conditions, 

as presented in Table 1. 

 The present study considers the steady two-dimensional MHD stagnation point flow towards a 

stretching sheet through a porous medium with variable surface temperature .The main aim of the following 

discussion is to bring out the effect of permeability’s of the medium and plate temperature on the flow 

phenomena. 

          The heat generation/absorption contribute significance for heat transfer case. Another aspect of  the 

present study is the saturated porous media which is very widely used to insulate a heated body to maintain the 

temperature. These are considered to be useful in diminishing the natural free convection which would 

otherwise occur intensely on the vertical surface. 
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Fig.8 Temperature profiles for different values of M,K
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     In the present study the solution is not only affected by the parameter i.e. porous matrix but also the  velocity 

ratio b
a

  in case of  Ishak et al.[24] .Moreover Ishak et al.[24] claimed the unique velocity and temperature 

profile for 1 1and   . The numerical computation is made for both velocity and temperature 

distribution. The analytical solution that is Kummer’s function is used in a particular case taking 0  .  

The following discussion presents the effects of various parameters exhibiting above phenomena. 

   Fig.2 presents the velocity distribution exhibiting the effect of the porous matrix and magnetic parameter in 

a particular case when the velocity ratio 0  .It is observed that the presence of magnetic field retards the 

velocity profile in the absence of porous matrix  100pK  .Since presence of magnetic field produces 

Lorentz force which usually resists the motion of the field .From (curve I and II) and (III and IV) it is clear that 

the presence of porous matrix decelerate the profile in the both presence/absence of magnetic field. 

Fig.3 exhibits the effect of , pM and K on velocity profile. In particular  is taken to be

 0.1 1 , 2( 1), 1         .The case of Ishak et al.[24] has been shown for verification. It is 

interesting to observe that, for 1  , increases implies stretching velocity increases the velocity profile in 

both the presence/absence of pM and K (dash lines). But when 1  ,the reverse effect is encounted. In 

particular if 1  i.e. stretching velocity is equal to stretching rate, the velocity becomes linear (dotted line) 

irrespective of the value for pM and K .The present result is in good agreement with the result of  Ishak et 

al.[24]. 

The effect of , pn K and  on temperature distribution are shown in Fig.4 for both 1( 0.1)    and 

1( 2)   in the absence of heat source parameter 0S  . In particular for different values of 

100pnand K  are the particular case of Ishak et al.[24].The value of rP is taken to be 1 ,where as viscosity 

and conductivity of the fluid enjoy the same property. It is remarked that for 0.1( 1)    porous matrix 

enhance the temperature profile in the thermal boundary layer where as increasing value of n  from negative 

to positive (-0.5 to 1) decreases the profile at its all points. This reveals that the presence of porous matrix 

0.5pK  act as an insulator to the surface, preventing energy loss as a result temperature increases. But the 

reverse effect occurs in case of 2( 1)   . The profile is asymptotic in nature and result is in good 

agreement with the result of Ishak et al.[24]. 

                         Fig.5 illustrate the variation of heat generation/absorption parameter on the temperature profile 

in the presence of porous matrix and taking 1, 1, 1rP n M   are fixed. For 0.1  ,heat generation 

parameter 0( 0.5)S S  enhance the temperature profile whereas increase in absorption leads to decrease 

in the temperature at all points. The reverse trend occurs in case of 2  (dotted). Further, it is also clear that 

the temperature profile is more pronounced with 0.1  as that of 2  ,i.e. decrease velocity ratio cause 

an increase in temperature in the boundary layer.  

Temperature distribution for different values of rP in the presence/absence of pK is displayed in Fig.6. Taking 

1, 1, 0.5M n S   as fixed for both 1( 0.1) 1( 2)and       . It is seen that, in the absence of 

( 100)p pK K  the high prandtl number fluid causes lower thermal diffusivity and hence reduces the 

temperature at all points in the thermal boundary layer. rP Means slow rate of thermal diffusion. Thus it may 

conclude that thinning of thermal boundary layer thickness in the               consequence of fluid with slow rate 

of thermal diffusion in the presence of magnetic field and porous matrix. 

                The effect of velocity rate,  and porous matrix are exhibited in Fig.7 for 

1, 1, 1 0.5rP M n and S    .It is clear that an increase in velocity rate in both the presence/absence of 

porous matrix decreases the profile. Whereas absence of ( 0)   porous matrix decelerate the temperature 

and presence of ( 2)  
pK has no significant effect on the boundary layer. In particular 0, 100pK  

(curve I),the present study is in good agreement with the result of  Ishak et al.[24]. The profile is asymptotic in 

nature to meet the boundary condition. 

                  The flow characteristics of the boundary surface are vital in deforming the flow stability and hence 

skin friction calculation is important in present study. Table 1 presents the skin friction coefficient and rate of 
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heat transfer at the stretching surface. From table 1 it is clear that skin friction coefficient and Nusselt number 

both decreases with an increase in magnetic parameter M  in the presence/absence of pK  and source 

parameter S .Where as reverse effect is encountered for the increasing value of n  and  . It is interesting to 

note that rP  has a dual character. Increase in rP  rate of heat transfer increases.  

                   Thus, in case of stretching sheet prandtl number fluid causes a thermal instability at the surface. 

 

 

 

5. Conclusion 

 

Provide From the above discussions we conclude the following: 

Presence of magnetic field produces a Lorentz force of electromagnetic origin, which is a resistive force, as a 

result of which the velocity decreases.The combining effect contributes to significant rise in the velocity 

boundary layer at all points in its flow domain for both the absence/ presence of porous matrix for particular 

case i.e. ( 1)   but reverse affect is encountered for ( 1)  .Thinning of thermal boundary layer thickness 

in the consequence of fluid with slow rate of thermal diffusion in the presence of magnetic field and porous 

matrix. In case of stretching sheet prandtl number fluid causes a thermal instability at the surface.Skin friction 

coefficient and Nusselt number both decreases with an increase in magnetic parameter M  in the 

presence/absence of pK  and source parameter S .Where as reverse effect is encountered for the increasing 

value of n  and  .              
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